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ABSTRACT 

A new technique,  called  multiple  endmember  spectral mixture analysis (MESM) 

was  developed and tested in  the  Santa  Monica Mountains,  using  Airborne 

Visibledhfrared Imaging Spectrometer ( A W S )  data  acquired  in  the  fall  of 1994 to  map 

Caliiornia chaparral.  The  technique  models  remotely  measured spectra as linear 

combinations  of pure spectra,  called  endmembers,  while  allowing  the  types  and  number 

of endmembers to vary  on  a  per  pixel  basis. In this manner,  vegetation is characterized by 

a  unique set of endmembers as well as by  the fractions.  Reference  endmembers  were 

selected  from  a Library  of field  and  laboratory  measured  spectra  of leaves, canopies,  non- 

photosynthetic materials (e.g. stems) and soils and  used  to  develop  a series of  candidate 

models. Each candidate model was applied to the  image,  then,  on  a per pixel  basis, 

assessed  in  terms  of  fractions,  root  mean  squared (RMS) error  and  residuals. If a  model 

met all criteria, it was  listed as a  candidate for that  pixel. For this study, selection criteria 

- 

included fractions between -0.01 and 1.01, an Rh4S less than 0.025 and a  residual  less 

than 0.025 in seven or more  contiguous  bands. A total of 889 two-endmember  models 

were  evaluated and used  to  generate 276 three-endmember  models. To facilitate  model 

selection  from  a large pool of candidates, an optimal  set  was  selected  to  provide  maximal 

areal coverage. A total of 24 two-endmember  and 12 three-endmember  models  were 

chosen. These models were  used  to  generate  fraction  images  and  vegetation  maps 

showing  evergreen  and  drought  deciduous or senesced  vegetation. 

We  found  that a majority  of  the  image  could  be  modeled as two-endmember 

models.  Three-endmember  models  provided  greater  areal  coverage,  yet  provided  poorer 

vegetation discrimination due  to an increase  in  model  overlap  (two or more  model 

candidates modeling  the  same  pixel).  The  vegetation  maps  demonstrate  that  the  technique 

is  capable  of  discriminating  a  large  number of spectrally  distinct  types of vegetation  while 
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capturing the  mosaic-like  spatial  distribution  typical  of  chaparral.  However,  additional 

research is required  to  fully  evaluate  the  technique  and  validate  the  vegetation  maps  that 

were  produced. 

INTRODUCTION 

California chapkal is  the  most  extensive  type  of  natural  vegetation  in Southern 

California (Wieslander  and  Gleason,  1954)  where it represents  a  significant source of 

species diversity  (Hanes,  1977)  and  plays  a  major  role  in  ecosystem  dynamics due to its 

unique fire ecology  (Keeley  and  Keeley,  1988). The abundance  of  chaparral  along the 

wildland  urban  interface  and  the  high fire hazard it represents,  provide  extra incentives 

for mapping  and  management of chaparral  communities.  Management  problems 5 have 

been further magnified by nearly  seventy  years of fire suppression  and  drought  related 

die-back  over  the  last  few  years  resulting  in  a  large  accumulation of  highly combustible 

fuels (Radtke et al.,  1982; Yo01 et al.,  1985). 

Remote  sensing  represents  one  means  for  rapid,  regional  mapping of chaparral. 

However, mapping  is  complicated  by  the  complex  spatial  distribution of chaparral  which, 

in response to steep topographic  gradients,  harsh  edaphic  conditions  and  variable fire 

histories,  typically  forms  a  complex  mosaic of different  species  dominants  and  age 

classes, each with  unique  successional  responses  to  fire  and  canopy  characteristics (e.g. 

moisture  content,  biomass,  fuel  load).  Previous  attempts  at  mapping  chaparral  using 

remote  sensing  have  met  with  variable  success.  For  example,  efforts  using  the  Landsat 

Multispectral  Scanner (MSS) resulted  in  poor  separation of shrub communities (Nichols, 

1974; Estes et  al.,  1981).  Additional  studies  have  combined  collateral  information such as 

topographic  data  with  remote  sensing  (Shasby  et al., 1981)  providing  improved results 

(Cosentino et  al.,  1981). 
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In this  study, we investigate the  use  of  the Airborne Visiblehfrared Imaging 

Spectrometer (AVIRIS) for providing  improved  maps  of  chaparral. We  have developed, 

and  teste,  a  new  algorithm for mapping  vegetation,  in  which  remotely  measured data are 

modeled as linear  spectral  mixtures  where  the  number of  pure  components 

(endmembers),  and types of components  vary  across  the  image. In this manner, chaparral. 

communities may be  distinguished  both  on  the  basis of the  relative  proportions  of  the 

endmembers as well  by  community  specific  endmember  selection. This research 

represents a part of a larger on-going  collaborative  study  with  the  Los  Angeles  County 

Fire Department-(LACFD)  and  United  States  Forest Service (USFS)  to  provide  improved 

maps of chaparral for fire prediction  and  preventive  modeling. 
- 

.MATERIAL and METHODS 

Study Site 

The study  was  initiated in the Santa Monica  Mountains,  an  east-west  trending 

range  that  extends  approximately 73 km from  the  Oxnard  alluvial  plain in  the  west to the 

Los  Angeles  river in the  east,  with  elevations  ranging  from  sea  level to as  high as 949 m 

at Sandstone Peak.  Annual  precipitation is low  and  temperatures  moderate,  varying 

seasonally  between  hot, dry summers  and  cool  wet  winters  typical of Mediterranean 

climates.  Geologically,  the Santa Monica  Mountains  represent  the  most  variable  portion 

of the  transverse  range,  consisting  primarily of  Miocene  marine  shales  and  breccias  and 

extensive volcanic  rocks  including  dikes, sills and  andesitic,  diabasic  and  basaltic  flows 

(Norris and  Webb, 1990). In the  east,  the  rocks  consist  primarily  of  Cretaceous  marine 

sandstone and  shale  and  Paleocene  marine  limestone  and  shale.  Late  Eocene  nonmarine 

flood  plain  deposits  are  scattered  throughout  the  range.  Uplift  and  erosion  of  the  range 

have  been  relatively  recent  occurring  in  the  Pliocene  and  Quaternary  (Dibblee, 1982). 
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Climatic, edaphic  (e.g.  substrate)  and  topographic  factors  combine to  produce  a 

complex mosaic  of  diverse  vegetation  including at least  four  distinct  types of chaparral 

(chamise, Ceanothus,  mixed  and  redshanks),  wetlands,  riparian  habitats,  woodlands,  and 

coastal sage scrub.  Vegetation  patterns  are  complicated by the  complex fire history  and 

resulting diversity  in  successional  states  of  the  vegetation.  For  example,  between 1935 

and 1994 over 1 15 fires  larger  than 16 ha  were  recorded  for  the  general  region  (Office  of 

Emergency Services, 1995) with  some  areas  experiencing  multiple  bum  events. 

Intermingled  with this complex  landscape  of  natural  vegetation is an  equally 

complicated mosaic of  land  ownership  and  land  use;  the Santa Monica  National 

Recreation Area (SMNRA) consists of -62,750 ha,  of  which 27,900 are  privately  owned, 

and the remainder  are  distributed  amongst  the  National  Park Service (7,280), State  Park 
.. 

system (23,500) and Los Angeles  County or municipal  parks (4,050). The  diversity of 

vegetation, complex  land-use  patterns and high  frequency of fires make  the  Santa  Monica 

Mountains an ideal study  site for mapping  chaparral  because of the  real  need  for 

improved fire  hazard  assessment  and  improved  management for fire  and  biodiversity. 

Data Acquisition and Preprocessing 

Analysis  focused on AVIRIS data  collected on October  19,  1994. AVIRIS is an 

imaging spectrometer  that  collects spectra at  a  nominal  full-width  half  maximum  and 

sampling interval of 10 nm resulting  in  224  spectral  bands  between 370 and 2500 nm.  It 

is flown on  the ER-2 at  an  elevation  of 20,000 meters,  collecting  a  cross  track  swath of - 
11 km, with  a  ground  instantaneous  field  of  view of  17.4 m for this flight. A typical  scene 

consists of 614 samples, and 512 lines,  covering  a 1 lx 9  km area.  Two  east-west  flight 

lines were  acquired,  consisting of a  total of 12 scenes.  Results  will  only  be  presented for 

flight 941019D, run 3, scene 5, centered  over  Point  Dume,  California  (Fig. 1). Areas 

labeled as Zuma  and Castro on  the figure  show the  location  of  two  field sites, one 
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consisting of coastal  sage  scrub  (Zuma)  and  the  other  chamise  (Castro),  where  plant 

samples  and  canopy  scale  field  spectra  were  measured.  Maps of  equivalent  liquid  water 

thickness,  precipitable  water  vapor  and  apparent  reflectance  were  generated  using  an 

algorithm  coupled  with  the  Modtran3  radiative  transfer  code  (Green et al.,  1993;  this 

issue).  Apparent  reflectance  spectra  for  three  vegetation types identified  in  the  field 

including  chamise  (labeled as Adenostoma),  Ceanothus  and  coastal  sage  scrub,  are 

plotted  to  the  left of the  index  map  (Fig.  1). 

Figure 1 

Once converted  to  apparent  reflectance, the AVIRIS data  were  modeled as 

spectral  mixtures of field  and  laboratory  measured  spectra of soil,  non-ph6tosynthetic 

vegetation (NPV), green  leaves  and  shade (Adams et al., 1993; Roberts et al.,  1993). 

Spectral  mixture  analysis (SMA) was performed  using  a  multiple  endmember  spectral 

mixture  model (MESM), in  which  the  number  of  endmembers  and  types  of  endmembers 

are  varied  across  the  image  (e.g.  Robe&  et al.,  1992).  The  MESM  approach  will  be 

described in more  detail  below. 

Endmembers  were  selected  from  a  spectral  library  consisting  of  889  field  and 

laboratory  measured  reflectance  spectra.  Laboratory  measured  spectra  included  a 

selection of green  leaves,  senesced  materials, stem and soils  measured  at  the  University 

of Washington  prior  to  1991  and  a  second  selection  collected  in  the  Santa  Monica 

Mountains  in  the  spring  and  fall of 1995  that  were  measured  at  the  University  of 

California,  Davis  (see  Ustin  et  al.,  this  issue  for  a  description of the  sites  and  sampling 

techniques). At the  University of Washington,  hemispherical  reflectance  was  measured 

using  a  modified  Beckman  DK2a  with  an  integrating  sphere  attachment. At  the 

University of California,  spectra  were  measured  with a Cary-5E  (Varian,  Inc.  Sunnyvale, 
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CA). All spectra  were  standardized to  halon  then  convolved  to  the  band  pass  and 

wavelength  interval  for  the  October  1994  AVIRIS  flight. 

Field  spectra  were  collected  at  three  field sites in the Santa Monica  Mountains: 

Zuma,  Castro (Fig.  1)  and  a  third site near  Encino  reservoir  consisting of a  high  biomass 

stand of  Ceanothus.  These  spectra  were  collected  using  an  Analytical  Spectral  Devices 

full range  spectrometer  (Analytical  Spectral  Devices,  Boulder, CO) and standardized to 

spectralon (Labsphere,  Inc., North Sutton, NH). They  were  collected  from  a  cherry picker 

on  loan  from  the  LACFD  at  a  height  ranging  from 3 to 5 meters  above  the  canopies. Prior 

to data collection 7 to 8 individual  shrubs  were  flagged  at  each  site.  The  bucket  was 

positioned above  each  shrub,  the  height  of  the  bucket  recorded  and  a  photograph  taken to 

ensure accurate  relocation.  Spectra  were  collected at roughly  one  hour  intervals from 

close to solar noon to near  sunset (4 to 7 collections).  These sites were  visited in the 

spring (June 8-10) and  revisited in the fall of 1995  (October  16-1 8). Field spectra were 

then  convolved  to  the  October  1994  wavelengths  and  combined  with  the  laboratory 

spectra.  Finally,  atmospheric and instrumental  artifacts  were  removed by selecting bands 

outside of  the  major  water  vapor  absorption  regions,  resulting in a  179  band  subset of the 

original 224 bands. 

Spectral Mixture Analysis 

AVIRIS  apparent  reflectance  spectra  were  modeled as linear  combinations  of  two 

or more  spectra  selected  from  the  spectral  library.  A  spectral  mixture  model is a 

physically  based  model  in  which  a  mixed  spectrum  is  modeled as a combination  of pure 

spectra, called  endmembers  (Adams  et  al.,  1993).  When  photons  interact  with  a single 

component within  the  field  of  view,  the  mixture  can be modeled as a  linear  sum  of each 

component  weighted by  the  proportion of the  components  within the  field  of  view.  When 

scattered photons  interact  with  multiple  components,  such as multiple NIR scattering by 
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vegetation,  the  mixture  has  the  potential  of  becoming  non-linear  (Johnson  et  al.,  1983; 

Shipman  and  Adams,  1987;  Roberts  et  al.,  1993).  For  most  applications,  multiple 

scattering is  assumed to be negligible,  although for a variety  of  vegetation,  non-linearity 

has  been  shown  to be significant  (Huete,  1986;  Roberts  et al., 1993;  Bore1  and Gerstl, 

1994;  Ray  and  Murray,  1996).  Example  applications  of  linear  mixture  models include 

Graetz  and  Gentle  (1982),  Pech et al.  (1986),  Smith  et  al.  (1990a & b),  Adams  et  al. 

(1993), Roberts et al.  (1993)  and  Shimabukuro et al. (1994). In this paper  we  assume 

linear mixing. 

The line&  mixture  model is based on the  fundamental  equation: 

Where  a  spectral  mixture, Pih’ from  location i, is modeled as the  sum  of N reference 

endmembers, w, each weighted  by  fraction fE. Unmodeled  portions  of  the  spectrum 

are  expressed as a  residual  term, Eih, at  wavelength A. In this analysis,  fractions  were 

constrained to sum  to  1.0  and  were  derived  using  modified  Gramm-Schmidt 

orthogonalization (Adams et al., 1993).  Model fit is assessed  either  using  the  residual 

term, Eih , or via  a  Root-Mean  Squared  Error (RMS) (Eq. 2): 

In the terminology used  by Gillespie  et al. (1990)  and  Adams  et al. (1993), 

endmembers  can  be  derived  from  the  image  (image  endmembers)  or  derived from a 
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library or field  reflectance  spectra  (reference  endmembers).  Analysis  in this paper  is 

based  on  reference  endmembers.  One  standard  application  of  SMA  is  to select an  optimal 

set  of  reference  endmembers,  typically  including  green  vegetation (GV), soil, NPV and 

shade,  that  minimize  the RMS and  residual  errors,  and  provide  reasonable (positive and 

physically  meaningful)  fractions  throughout  most  of  the  image  (S&th et al.,  1990a & b). 

This  approach  has  an  advantage  in  that  it  is  relatively  simple  and  provides  a  physically 

meaningful  measure  of  abundance  that is portable  across  sensors  and  through  time  (e.g. 

Adams et al.,  1995;  Roberts  et  al.,  1996).  However,  there are a  number  of  disadvantages 

to  the simple mixing  concept. 

The simple  mixing  model  concept is limited  because it fails to account for the  fact 

that  the  number  of  materials  within  the  field  view  and  the  spectral contrasi between  those 

materials is variable.  For  example,  a  forested  ecosystem  might  be  best  described as a 

mixture of green  leaves  and  shade  while  a  shrubland may require  four.  According to 

Sabol et al. (1992),  the  accuracy  of  fractions  will  be  highest  when  the  exact  number  that 

are  required  to  account  for  the  spectral  variability  are  utilized  in  the  model;  too  few 

endmembers  will  partition the  unmodeled  endmember  into  the  fractions  (creating  a 

fraction error) and  increase  the RMS; too  many  endmembers  will  make  the  model 

sensitive to instrumental  noise,  atmospheric  contamination  and  natural  variability  in 

spectra, resulting  in  fraction  errors.  Fraction  errors  are  commonly  expressed as negative 

fractions  in  models  that  are  unconstrained  to  force  positive  fractions.  Even  with  224 

channels,  the high degree of correlation  between  each  wavelength  results in fairly  low 

dimensionality for any  given  pixel. 

Another  disadvantage  to  the  simple  mixing  model  concept is that  it  fails  to 

account for subtle  spectral  differences  between  materials  that  will  have little impact  on 

Rh4S error and  will  only be expressed  in  the  fractions  and/or as a  residual.  For example, 

9 



Roberts et al.. Mapping chaparral in the Santa Monica Mountains 

Roberts et al.  (1993)  found  that  senesced grass and  soils were difficult to include in the 

same  mixture  model  without  generating  fraction  errors  but  could  readily be distinguished 

by mapping ligno-cellulose  absorptions  expressed as residuals  from  a  three endmember 

model  that  excluded NPV. This concept  can further be illustrated by comparing two 

laboratory measured  leaf  spectra  (Sophora, Grassmel) to a  spectrum  of  chamise (Castro) 

derived from the Santa.Monica AVIRIS data (Fig  2a).  The AVIRIS spectrum  can  be 

modeled as a  mixture of  photometric  (spectrally flat) shade  and  either  leaf  spectrum. In 

the case of  "Sophora",  a  high  reflectance leaf, chamise is modeled as having  a lower GV 

fraction (0.42), while  the  lower  reflectance  leaf, "Grassmel", results  in  a higher GV 

fraction. Of these two models,  "Sophora"  would  be  selected as a better  model  based on a 

lower RMS error (0.019)  and  lower  residuals (Fig. 2b). In a  four-endmember model, 

residuals and RMS errors  would  be  expected  to drop significantly,  making the two 

models  distinguishable  primarily as a  difference in the GV and  shade  fractions. 

Figure 2 

In this paper we develop  a  new  technique  that  minimizes  fraction errors while 

permitting a larger number of endmembers to be modeled  across  a  scene.  Using this 

approach,  the  number of  endmembers,  and  types, are allowed  to  vary  for  each pixel in  the 

image. The approach we  have  developed  is  an  extension  of  previous  work  by Roberts et 

al. (1992)  in  which AVIRIS data  were  modeled  by  sets  of  two-endmember  mixture 

models  derived from the  image  (image  endmembers).  The  two-endmember  models  were 

then  used  to  construct  three-endmember  models. In this  paper  we  generate sets of 

candidate models  from  reference  endmembers,  rather  than  deriving  them  from  the  image. 

This new  approach  has  distinct  advantages  in  that  it is: 1)  repeatable, 2) portable  between 

images  and 3) produces  fraction  images  that  are  connected  to  the  spectra of real  materials. 
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The  key  to  the  multiple  endmember  approach  is  to  start  with  a  series  of  candidate 

two-endmember  models,  evaluate  each  model  based  on  selection  criteria  then,  if  required, 

construct candidate  models  that  incorporate  more  endmembers.  Three  selection criteria 

were  used  in this study  (Fig 3). These  include: 

- 1) A fraction  criterion. A model  is  selected  only  if  it  produces  physically 

reasonable  fractions  between -0.0 1 and 1.01. A 1 % error is permitted  to  allow for 

instrumental  noise  generated  errors  in  fractions. 

2) An RMS ,criterion. A model is selected only if  the RMS is below the threshold. 

In this study  a  threshold  of 0.025 was  used. A lower  threshold  (e.g. 0.020) will  reduce  the 

likelihood  that  a'candidate  model  is  selected  while  a  higher  threshold  will increase the 

likelihood. 

3) A residual  criterion  consisting  of  a  threshold  and  count.  The  residual  threshold 

was established  to evaluate whether any individual  residual  exceeds  the absolute value  of 

the  threshold.  The  residual  count  was  established  to  count  the  number  of times the 

threshold  was  exceeded  contiguously. A contiguous  threshold  count  was  used to 

distinguish  residuals  resulting  from  noise  and  atmospheric  contamination from residuals 

resulting  from  the  presence  (or  absence) of an absorption  in  a  candidate  model  relative to 

a  mixture.  Through  experimentation,  a  residual  count of 7, corresponding to width  of 70 

nm  wide,  was  selected. 

At  the extremes of  threshold  values,  very  low  thresholds  (small RMS, small 

residual  and  count)  will  produce no candidate  models  while  large  thresholds will make 

every  model  a  candidate.  Therefore,  optimal  criteria would lie  somewhere  between  these 

two extremes. 

The concept  of  multiple  two-endmember  models  is  illustrated  readily  by  a 

scatterplot between 830 and 670 nm (Fig. 3). Data  points  from  three spatially and 
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spectrally  distinct  regions  are  plotted as solid  triangles,  open  diamonds  and solid squares. 

From  the  point  of  view  of  a  simple  mixing  model,  these  spectra  could be modeled as a 

three  endmember  mixture of  photometric  shade,  GV  (Sophora)  and NPV (Scpnls). 

Alternatively,  the  data  could be  modeled as three  separate  two-endmember mixture 

models  consisting of photometric  shade  mixed  with two types  of  green leaves (Sophora, 

Grassme 1) or NPV (Scpnls). In the  first  approach,  the  vegetation  type  that corresponds to 

the  open  diamonds  would  be  distinguished  from  vegetation  shown by the solid triangles 

based  on  a  higher NPV fraction.  In  the latter approach,  each  cluster  would be modeled  by 

its own  unique  set of  endmembers. 

Figure 3 

The multiple  endmember  mixture  model  was  implemented by constructing a 

library  consisting of 889 candidate  two-endmember  models.  For this study, all two 

endmember  models  were  developed as a mixture  of  a  bright  endmember (GV, soil or 

NPV) and  photometric  shade.  Candidate  models  were  constrained  to  have fractions 

between -0.01 and 1.01, an FMS threshold  below 0.025, a  residual  threshold  of 0.025 and 

a  residual  count of 7. A program  was  designed  that  produced an output image consisting 

of  up to lo00 bands, each band  corresponding to a  candidate  model.  If a model  met  the 

criteria it  was  assigned  a  value of 1 in  the  matrix, 0 otherwise.  Each  model  was evaluated 

for each  pixel,  representing  in this study 889 separate  mixture  models for each of the 

3 14,368 pixels  in  an AVIRIS scene.  Ocean  pixels  were  screened  based on a shade 

fraction of 80% or  higher.  Ocean  was  screened  because  it  could be modeled  by  all 889 

candidates. A subset  of 24 two-endmember  models  were  selected  and  used to construct 

276 three-endmember  models  involving  two  high  reflectance  endmembers  and 

photometric  shade.  Subselection  is  described  below. 

12 



Roberts et al., Mapping chaparral  in the Santa Monica Mountains 

Optimization of model  selection 

The approach  we  employed  requires  subselection  from  a  potentially large number 

of candidate models. To assign  a class to each  pixel  it  becomes  necessary to choose 

which,  among  the  models,  represents  the  optimal  candidate.  Several  steps  were  taken to 

remove poor candidates,  reduce  the  overall  number of candidates  and  reduce  model 

overlap. The overall  objective  when  evaluating  candidate  models  was to select the 

smallest  subset  (between 10 and 20 models)  that  can  classify  the  largest area while  ideally 

minimizing endmember  model  overlap. This problem  can be formulated as an integer 

programming  problem  that  mimics  the  classical  maximal covering problem  of  Church 

and  Revelle (1974). To formulate the  problem  we  define  the  following: 

i, I = index  and  a  representative  sample  set  of  pixels from the  scene to be  used  to - 
in selecting an optimal set of models. 

j, J = index and set of potential endmember  models 

aij = 1 or 0, 1 if pixel i can be classified by model j, 0 otherwise. 

p = the  number of models to be  chosen (10-20). 

ai = The  number  of  pixels  represented as element  i,  initially set to 1. 

Xj = 1 or 0, 1  if  model  j is chosen, 0 if  not. 

Yi = 1  or 0, 1 if  pixel i cannot be  classified  by  the  selected set of models, 0 

otherwise. 

Our objective  was to minimize  the  following  function: 
z = L i Y i  (3) 

i 

Subject to  the constraints that 

COlijXj + Yi 2 1 for  each  i E I 
j 

(4) 
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Two procedures  were  employed  to  solve this problem.  The first was General 

Integer  Programming  using  CPLEX,  a  commercial  software  package.  The second was  a 

special heuristic  based  on an approach  developed by Church  for  the  Maximal Covering 

Problem  (Church  and  Revelle, 1974), that  belongs  to  a  class  of  heuristics called h- Opt. 

Before  the  model  was  solved,  several  steps  were  taken  to  reduce  the number of 

candidate models  and  samples  used  in  optimization.  These  steps  involved: 

Initial reduction of candidate models 

1) Removing all models  that  accounted  for  less  than 0.001% of  the image (3 14 

pixels out of 3 14,368). 

2) Removal of spatially  fragmented  models.  At  the  resolution of the 17.4 m - 
AVTRTS pixel, vegetation  communities  would  be  expected to form  contiguous blocks of 

pixels rather than  single  pixels  scattered  across the image.  Candidate  models  that showed 

clustering behavior  (desired)  were  located by running  a  3x3  median fdter across  the 

image corresponding to each  model  (consisting  of  a 1 or  a 0), then  subtracting  the filtered 

image from the  original  model.  Through  visual  comparison it was  found  that  a 20% loss 

of pixels  through  filtering  was  characteristic of a  fragmented  distribution. Through these 

two steps candidate  models  were  reduced  from 889 to 223 models. 

Pixel subsampling 

Because  the  optimization  routines  were  computationally  intensive,  the  images 

were further sampled  to  reduce  the  number of pixels  evaluated by these  routines. Three 

steps were  employed for pixel  reduction: 

1) Pixel  subsampling.  The 223 candidate  models  were  sampled  every third sample 

and  third line, producing  a  reduced  list of 35,055 pixels. 

14 
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2) Dominated  models  were  eliminated. A dominated  model  was  defined as a 

model for which  every  pixel  could  also  be  modeled  by  a  different,  more  abundant 

candidate. 

3) Equivalent  pixels  were  consolidated. If a  pixel  could  be  modeled  by  the exact 

same suite of  models as another  pixel, the  pixels  were  consolidated  and  represented as 

one.  For  example,  if  i  and i were  consolidated,  then  ai -> ai + ai and  pixel  i was removed 

from  the  optimization  problems. 

RESULTS/DISCUSSION 

Out of 889  candidate  two-endmember  models,  14  were  selected  that  provided 

optimal  areal  coverage.  These  models  consisted of 7 NPV  and 7 GV spec&  and  mapped 

a  majority  of  the  natural  vegetation  in  the  area. At the  time  of  the  overpass, in Fall 1994, 

much  of the natural  vegetation  consisted of evergreen  shrubs  and  trees or senesced 

grasslands  and  drought  deciduous  sage  scrub.  The  former  were  modeled as mixtures of 

GV and  shade,  the latter as mixtures of NPV  and  shade. This 14  model subset was 

expanded to include  spatially  contiguous  regions  in  the  image  where  viable two- 

endmember  models existed, yet  were  not  chosen  because of  low  areal coverage. 

Examples  of  these  kinds  of  models  included  roads,  bare  rock,  beaches  or  spatially 

contiguous,  yet  small  patches of  natural  or  disturbed  vegetation.  Expansion was 

accomplished by removing  all  pixels  that  were  modeled by  the original  14  model  set,  then 

stepping  through  each of the  remaining 209 models  and  selecting  regions  that  were 

neglected in the optimization  step. In total, 24 models  were  selected  consisting of 10 NPV 

spectra, 8 GV spectra  and 6 rocks/soils  (Table  1).  These  models  accounted for 185,588 

pixels,  representing 75% of  the  terrestrial  area  in  the  image.  The  remainder  consisted  of 

66,656 water  pixels  and 62,124 (19.8%)  pixels  that  remained  unmodeled. 

15 
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Table 1 

These  results  demonstrate  the  large  degree to  which  a  spectral  mixture  can be 

modeled  by  a  small  number  of  endmembers. At  the  same  time,  they  also  demonstrate  that 

no  single  set of  endmembers  can  adequately  describe  every  spectrum  in  the  image. 

Although  over 80% of the  image  could  be  modeled  using just two endmembers, a  total of 

24 endmembers  were  mapped  across  the  image.  The  degree  to  which  these  models 

represent  spatially  contiguous,  potentially  meaningful units across  the  landscape  can be 

illustrated  using  a  subset  of  three  of  the  models  (Fig. 4). In this figure, three  models 

consisting of  GV-Shade,  NPV-Shade  and  Soil-shade  are  displayed as red, green, and  blue, 

respectively. Urkodeled areas and  water are displayed as black. Of these three models, 

the  most  extensively  distributed is the  GV-shade  model.  Based on field work  conducted 

in 1995, this model  roughly  corresponds  to  the  distribution of chamise  (Adenostoma 

fasciculatum).  The  NPV-shade  model  (Scpnls)  corresponds  to  drought deciduous sage 

scrub,  while  the  Soil-shade  model  accurately  maps  major  roads  in  the  area. The purity  of 

colors  (absence  of  cyan,  magenta or yellow),  indicates  very  little  model overlap, which 

was  typical of most  of  the  models  selected. 

- 

Figure 4 

At  the same  time  displaying  intriguing  spatial  patterns,  the  nature  of  the  models 

that  were  selected  raises  important  questions.  Very  few  of  these  spectra  are of materials 

located in the  study  area  (Table 1). Of  the 24 models,  only  six  are  spectra  collected  in  the 

Santa  Monica  Mountains,  of  which  five  are  of NPV and  one a GV spectrum. The problem 

is  particularly  acute  for GV spectra.  Several of  the  models  (e.g. Blkbrush  and  Purglan)  are 

leaf  spectra  from  desert  species.  Ideally,  a  more  satisfactory  model  would  have  selected 

16 



Roberts et al., Mapping  chaparral  in the Santa Monica Mountains 

only  materials,  such as Adenostoma  fasciculatum,  that  both  occur  in  the  area  and  were  in 

the library. 

To a  certain  extent,  these  results  reflect the fact  that 1) key spectra were  missing 

from  the  library  and 2) the MESM and  optimal  area  coverage  approaches  were 

unconstrained in terms of the  kinds of spectra  that  could  be  selected. For example,  no soil 

spectra  were  available for the  area.  Of  the  green  leaf  spectra, only  a  dozen species were 

represented in the  library.  Furthermore,  had  the  model  been  limited to a  regionally 

specific  library,  consisting  only of  materials  known  to  be in the  area, it may  have 

provided  nearly h e  same  coverage,  yet  selected  spectra  that  actually  matched  materials in 

the field of  view. 

The 24 two-endmember  models  were  used  to  generate 276 three-endmember 

models  consisting  of  a  bright  endmember (GV, soil, NPV) and  photometric  shade.  After 

masking  pixels  that  had  already  been  modeled  using  two-endmembers,  and  screening for 

low coverage and  fragmentation,  these 276 models  were  reduced  to  a  subset  of 101 

models.  The  top 10 models  of this subset  were  selected  based  on  maximal area coverage. 

Two  additional  models  were  selected by  removing  the  top 10, then  individually  assessing 

the remaining 91 models  and  searching  for  spatially  contiguous  regions  with  small spatial 

extent.  After  screening  and  optimization,  three-endmember  models  accounted for an 

additional 55,882 pixels,  leaving 10,774 pixels  unmodeled  (Table 2). The remaining 

10,774 pixels  consisted of spatially  contiguous  areas of the image,  primarily  in  urban 

areas, for which  no  matching  spectrum  existed  in  our  library. 

Table 2 
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These  results  demonstrate  the  extent  to  which  even  a 224 channel  data  set,  such as 

AVIRIS,  can be modeled  using  a  relatively  small  number of endmembers.  Over 96% of 

the  image  could  be  modeled  with 3 endmembers or less.  Of  the  three-endmember  models, 

the  most  spatially  extensive  was  a  NPV-GV-shade  model (29 in  Table 2). A  majority of 

the  remaining  three-endmember  models  consisted  of  endmembers  in  different  categories 

(e.g.  GV-NPV,  GV-Soil  etc).  The  exceptions  were  models 25 and 36 (two NPVs) and 26 

(two  GVs). 

One key objective of this study  was  to  investigate  the  use  of MESM for  mapping 

chaparral. An alternative  way  to  view  the  approach is to consider MESM similar  to  more 

standard  classification  schemes  such as cluster  analysis.  Unlike  cluster  analysis,  however, 

classes are assigned  to  spectra  based  on  whether  they  fall  within  the speccal region 

described  by a two-endmember  vector,  three-endmember  plane,  etc.  In  addition,  unlike 

cluster  analysis, a pixel  does  not  necessarily  belong to  a  single  class,  but  may  be 

described by several  models  that  fit  the  criteria. In this paper,  we  describe  non-unique 

class  assignment as model  overlap. 

Using  the 24 two-endmember  candidate  models,  model  overlap  was  relatively 

minor.  A  majority  of  the  pixels  could be described  by  a  single  candidate or two 

overlapping  models  (Fig. 5). Pixels  which  had  four or more  candidates,  in  general, 

consisted  either of roads,  or  north  facing  slopes,  in  which  the  low  signal  reduced  model 

discrimination by lowering  the RMS and  residual  errors. In comparison,  using  haif  as 

many  candidates,  the  three-endmember  models  resulted  in  nearly  twice as much  overlap 

(Fig. 5). 

Figure 5 
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These  results suggest a  strategy  for  improved  discrimination  of  vegetation  across 

the landscape.  Based  on  a  comparison of  the two-endmember  and  three-endmember 

models,  it  could  be  concluded  that  a  better  strategy for mapping  vegetation  would  be to 

minimize  the  number  of  endmembers  used  in  the  model.  By  using  two-endmembers  it 

becomes  possible to attach a majority  of  the  image  to  a  unique  mixture  of  shade  and  one 

of GV, NPV or soil.  Using  three  endmembers,  far  less of  the image  is  uniquely  modeled. 

When  interpreting  these results, however,  it  is also necessary to evaluate  them  within  the 

context of  the criteria used to select the  models.  Had  we  lowered  the RMS criterion  (say 

to 0.02) and  tightened  the  residual  constraints,  fewer twoendmember models  would have 

been  selected.  Tighter constraints would also have  had  the  effect  of  lowering  overlap for 

the  three  endmember  models. - 
In terms  of  assigning class names,  model  overlap  presents  a  problem.  When  two 

models  overlap,  one  is either forced  to cany the  ambiguity, or choose  between  the 

models.  When  choosing  between  competing  models,  one is forced to decide  the  order  in 

which class names  will  be  assigned.  The  choice  becomes  more  difficult as the  degree  of 

overlap  increases.  Our strategy for choosing  between  overlapping  models is discussed 

below. 

Map  Generation 

The  two-endmember  and  three-endmember  models  were  used  to  generate  maps 

showing the distribution of spectrally  distinct  chaparral  vegetation,  urban  vegetation, 

grasslands  and  roads. Two maps  were  generated,  one  showing  vegetation  dominated  by 

senesced  grasslands  and  drought  deciduous  sage  scrub  (Fig. 6), the  other  showing 

vegetation  dominated  by  evergreen  shrubs  and  trees  (Fig. 7). Class  names  were  assigned 

to  the  names of the  spectrum  used in  the  model  because  many  of  the  classes  had  not  been 
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rigorously  evaluated  in  the  field.  The  colors  associated  with  each class name  (spectrum) 

are  included iq both  figures.  Because many  of  the  models still  showed  overlap  (more  than 

one  model  assigned to a  pixel)  decisions had  to  be  made concerning  the order in  which 

models  would  be  assigned  to  the  image.  The  approach  taken in this study was to start by 

assigning class names  to  pixels  using  models  that  showed  minimum  overlap first. Where 

extensive  model overlap occurred,  pixels  were  assigned to  the  model  that  was  less 

extensively  distributed  (representing  subsets of  the  more  extensively  distributed  model). 

Figure 6 

Figure 7 

Vegetation  maps  produced  using MESM showed  that  the  technique is capable of 

mapping  a large number of spatially  and  spectrally  distinct  types of vegetation.  For 

example,  9 classes of  NPV-shade  models  were  mapped for the Santa Monica  Mountains 

(Fig 6) .  Field  work in the  spring and  summer  of  1995  verified  that  a  number  of  the 

spectral classes match  distinct  vegetation  units.  For  example,  class  1  (Scpnls)  matches 

regions  known  to  be  dominated by senesced  grasslands  while classes 2  and 3 

(Zerci2st710  and Wphlph2) match  coastal  sage  scrub.  Furthermore,  the large number  of 

classes  and  mosaic like distribution  match  what  is  known  concerning  the  vegetation  in  the 

area.  The  map of evergreen  vegetation  distinguished  areas  known  to  consist  of 

Adenostoma fasciculatum (Sophora)  from  areas  that  have  been  observed  to  consist of 

Ceanothus (Grassmel). Urban  Vegetation  (red),  was  mapped using three of the  models, 

and  very accurately  mapped the  distribution  of  vegetated  urban  areas  as  distinct  from 

natural  vegetation. This result  alone  may  be  of  use  in  mapping  the extent of chaparral. 

Some of  the  classes,  however,  should be  viewed  with  caution.  Although  a  large 

number  of  vegetation  classes  were  mapped,  the  extent of field  work to date is not 
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adequate to  verify  how  many  of  them  correspond  to  real units on the  ground.  Regions 

where  two  or  more  models  overlapped  should,  in  particular, be  viewed  with caution.  Had 

a different model  been  selected,  the  spatial  pattern  may  have  been  very  different. Finally, 

the names of  the  models  that  were  selected  provide  some  reason  for  caution. A majority 

of the evergreen  models  correspond  to  spectra  selected  from the  general  library,  not  from 

spectra that are  specific  for  the  area.  For  example,  “Sophora”,  which  roughly  maps 

Adenostoma,  was  chosen  over  chamise  spectra  (at  the  leaf  and  canopy  scale). Of the 

spectra that  were  selected,  more  than  half  correspond  to  vegetation  that  is  known  to  not 

occur in  the  area. An alternative  strategy  would  be  to run the  models  on  a  smaller subset 

of models  that  consist only of materials known to be in  the  area. It is possible,  using  the 

maximal  area  coverage  approach,  that  the  models  that  were  selected  were  only  slightly 

better  than  models  using  spectra  collected in the  area.  Had  the  program  been  given  only a 

choice from a  regionally  specific  library,  it may  have  produced  a  similar  result  but  used 

spectra of materials in the  area. 

In addition  to  vegetation  maps,  images  were  generated  showing the distribution of 

fractions  of GV, NPV, soil  and  shade  (Fig 8). The  fraction  maps  were  generated starting 

with  maps  corresponding to the fractions of all 24 endmembers.  Each  fraction  image was 

placed  in its appropriate  category  (e.g. GV), then  combined  with all other  endmembers  in 

the  same  category.  Fractions  were  combined  at  pixels  where  two  endmembers of the  same 

category  were  mapped  (e.g.,  two GV endmembers + shade).  Fraction  images  are 

displayed  with NPV, GV and  soil as red,  green  and  blue  (Fig. 8). Bright  colors 

correspond to  high  fractions  and  dark  colors  to low fractions.  All  fractions  remained 

physically  reasonable,  between 0 ind 100%. The  extent  to  which  the  image  was  modeled 

using  two-endmember  models is reflected in the  purity of the  colors.  Very  few  pixels  had 

significant  mixtures of GV, NPV or  soil.  South  facing  slopes  and  ridges  dominated  by 
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NPV are  displayed as bright  red.  South  facing  slopes  dominated by GV are  displayed as 

bright  green. North facing  slopes of either NPV or GV are  shown as dark  red or green. 

Figure 8 

The  fraction  image  shown  in  Figure 8, represents  only  one  of  many  ways  the 

information  could  be  displayed.  For  example,  with 24 endmembers it is  possible  to create 

24 separate fraction images,  one  for each endmember.  When  combined  with  the  unique 

combination  of  endmembers  associated  with  each  model, this provides  a  very large 

amount of inforrhation.  When  merged  with  other AVIFUS products  such as maps  of  liquid 

water  and  water  vapor, this provides an unprecedented  amount  of  information  about  the 

terrestrial  surface.  One  obvious  challenge  will  be  in  determining  how  to  best  organize this 

information  to  answer  specific  questions  about  a  region. In this study,  our  primary 

objective  was to investigate  a new  method  for  mapping  California  chaparral.  Near  term 

goals  will  be  to  combine  our  vegetation  classes  with  other  remotely  measured  and  field 

measured  measures  of  abundance,  moisture  content  and  fuel  loads  to  provide  necessary 

information  for  prediction  and  management of fire  in  the  region. 

SUMMARY 

In this  paper we  describe  a  new  technique  that  uses  a  multiple  endmember spectral 

mixture  model (MESM) to  map  California  chaparral as linear  mixtures of two  or  more 

reference  endmembers.  The  technique  has  the  potential  for  providing  improved 

discrimination  of  vegetation  classes  through  pixel-unique  endmember  selection  while 

providing estimates of  fractional  abundance  of  the  components  within  the field of  view. 

MESM is based  on  the  concept  that,  although  any  individual  spectrum can be  modeled 

with  relatively few endmembers, the  number  of  endmembers,  and  types  of  endmembers 
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are  variable  across an image. A subset  of  all  possible  models  was  selected  based on 

optimization for maximal  area  coverage. 

The  MESM  approach  was  applied  in  the Santa Monica  Mountains,  a 

topographically  and  geologically  complex  region  where  frequent  fires  and  complex  land- 

use patterns  make  mapping  and  management  of  California  chaparral  critical.  Using  the 

technique, we mapped 7 evergreen  classes  and 9 senesced  or  drought  deciduous classes of 

natural  and  introduced  vegetation  in  the  area.  Two-endmember  models  provided  better 

separation of classes than  three-endmember  models  because  of  reduced  model  overlap. 

Because  the  classes are attached  to  actual  laboratory or field  spectra,  they are readily 

interpreted  in  terms of the types of  materials  within  the  field  of  view. 
- 

Although  the  results  are  very  encouraging,  they  are  still  preliminary.  Before  the 

maps  generated  in this study  can be used  for  applications  such as fire modeling  and 

prediction  they  must  be  validated  in  the  field. In addition,  further  research is necessary to 

determine  optimal  constraints  for  evaluating  the  models.  Regionally  specific  libraries 

represent  a  potentially fruitful direction  for further research.  For  example,  an  urban 

library  might consist of  spectra of materials  typically  found  in  urban  environments  and 

used  to identify  and  map  them. In the Santa  Monica  Mountains,  a  regionally  specific 

library for chaparral  might  provide  a  direct  means  for  mapping  assemblages  of  species 

based on improved  spectral  fits.  Finally,  techniques  for  minimizing  model  overlap  and 

ordering of classes  need  further  investigation. 

The  increasing  availability of imaging  spectrometry  data  and  the  long  term  desire 

of ecologists and managers  to  obtain  detailed  maps of species  or  species  assemblages 

high-lite  the  need for new tools  for  analyzing.multispectral  data  and the  need for 

improved  spectral  characterization of vegetation. In this  paper  we  present  a  new  approach 

23 



Roberts et al., Mapping chaparral  in  the  Santa  Monica  Mountains 

that  may  provide  a  better link between  remotely  sensed  data  and  species  assemblages, 

better  discrimination  between  vegetation  types  and the potential  for  mapping  abundance 

through  spectral fractions. 
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Table  1:  Two-endmember  mixture  models.  Note,  pixels  were  assigned  to  each  class  in  the 
order  listed  below.  Where  overlap  occured, the  pixel was assigned  to  the  first  model. 
Spectra described  with a (vw)  are  from  the  University  of  Washington  collection. 

Class EM1 Tvpe  Pixels*  Description 
1 
2 
3 
4 
5 
6 
7 
8 
9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 

scpnls NPV 
Zercist710 NPV 
Wplph2 NPV 
Cceol2-34 10 NPV 
Zarca 1 r2457  NPV 
Cadfa-1267  NPV 
Dimbark6 NPV 
Sophora GV 
ZlbmalalOb GV 
Grassmel GV 
Qudolstack GV 
Blkbrush GV 
Ogheather GV 
BuroO  GV 

soil 
Az30a284 Soil 
Dcrs3  Soil 
Az 10284  Soil 
Hg185a soil 

Scrs5 Soil 
Plss2 NPV 
Purglau GV 

WPlPU NPV 

16371 
2798 
12837 
17777 
16943 
9188 
2300 
3373 1 
12120 
40628 
3498 
2950 
3641 
3181 
1158 
5 15 
35 1 
743 
1590 
1165 
21 1 
349 
529 

Litter cvw> 
Stems of Eriogonum  cinereum 
Litter (UW) 
Stems of  Ceanothus  oliganthus 
Leaf  of  Artemisia  californica  (October) 
Stem from Adenostoma  fasciculatum 
Bark  from  tropical  tree  species ( I N )  
Leaf (UW) 
Leaf from Malosma  laurina,  (October) 
Grass  spectrum 0 
Leaf  stack  from  Ouercus  doualasii (UW) 
Leaves  from  Coleogvne  ramossisima 
JJ=mJw 
Ambrosia  dumosa ( U W  Collection) 
Soil, (vw) 
soil, (vw) 
Soil, (vw) 
soil, (vw) 
soil, (UW) 
Litter (vw) 
Soil (UW) 
Litter (vw) 
Purshia  glandulosa 0 

24 Zarcalst245 NPV  1014  Stem  from  Artemisia  californica 
Total  Modeled 185,588 
Water 66,656 
Unmodeled 62,124 
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Table  2.0  Three-endmember  mixture  models.  Note,  all  pixels  modeled by two- 
endmember models  have  been  masked. As in  the  two-endmember  models,  pixels  were 
assigned to each  class  in  the  order  listed  below.  Where  overlap  occured,  the  pixel was 
assigned  to  the  first  model. 
Class EM1 TvDe  EM2  TvDe Pixels 
25 Scpnls NPV  Plls2  NPV 5205 
26  Ogheather GV  Purglan  GV 8272 
27  Cceol2-3410  NPV  Az30a284  Soil  4286 
28 Qudolstack GV Az30a284  Soil  5604 
29 Wplph2 NPV  ZlbmalalOb  GV 2 1362 
30 Plss2 NPV  Purglan  GV  4909 

32 Wplph2 . NPV Qudolstack GV 825 
33  Grassmel GV Az10284 Soil 969 
34  Zercist710 NPV Moa284  Soil 236 

36  Dimbark6 NPV Plls2 NPV  248 
Total  55,882 
Total 2-em  185,588 
Water  66,656 
Unmodeled  10,774 

31 Wplph2 NPV  Az10284  Soil  1058 

35 k g 2  Soil Purglan GV 327 
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Figure Captions 

Figure 1. Index  map of the  study  area.  Apparent  reflectance  spectra  of  chamise, 

Ceanothus  and  coastal  sage  scrub  are  provided  to  the left, labeled as Castro, Ceanothus 

and  Zuma.  The  original  scene  has  been  rotated 90" counterclockwise  to  orient  north 

towards  the  top of the page. 

Figure 2 a)  Reflectance  spectra  of  two  leaves (Grassmel and Sophora) and an  apparent 

reflectance  spectrum of chamise  (Castro).  GV-shade  mixture  models of Castro  using  the 

two different leaf  spectra.  b)  Shows  a  mixture  model for chamise,  which  can be modeled 

as 52% GV with an RMS of 0.038 using Grassmel or as 42% GV with  an RMS of 0.019 

using  Sophora. The sophora  model  produces  the smaller residuals. 
- 

Figure 3 a) NIR vs  red  scatterplot  showing  three  spatially  and  spectrally  distinct  regions 

of the  image.  Candidate  two-endmember  models are plotted as vectors  connecting 

photometric  shade to each  endmember.  Selection  criteria for each  model  are  listed  on  the 

right. b) NIR vs SWIR scatterplot for the  same data clusters. 

Figure 4. Selection  of  the  three  two-endmember  mixture  models.  The  associated spectra 

are  plotted  on  the left, the  distribution of each  is  shown  on  the  right,  plotted  with Scpnls, 

Sophora  and Azg2 as red,  green  and  blue,  respectively. 

Figure 5. Histograms  showing  model  overlap for two-endmembers (dark) and  three- 

endmembers  (light). 

Figure 6. Vegetation  map  of  drought  deciduous  and  senesced  vegetation  generated  using 

the  NPV endmembers. A key  to  the 9 NPV classes  is  shown on  the left.  Evergreen 

vegetation is shown as blue,  ocean  and  unmodeled  pixels are shown as black. 
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Figure 7. Vegetation  map of evergreen  and  urban  vegetation  generated  using  the  GV 

endmembers. A key  to  the 8 GV  classes is shown on the  left.  Senesced  and  drought 

deciduous  vegetation is shown as blue,  ocean  and  unmodeled  pixels  are  shown as black. 

Figure 8. Fraction  image  showing  NPV,  GV  and  soil  fractions as red,  green  and  blue, 

respectively. 
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